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THE ASYMPTOTIC STABILITY OF SYSTEMS WITH DELAY* 

A.P. BLINOV 

Sufficient conditions for the existence of a finite domain cf attraction 
of an unperturbed solution of autonomous system with delay are obtained, 
and its lower estimate is given using a method which requires that only 
the Lyapunov function need be known for the system in question without 
delay. 

The results of investigating the stability of non-linear systems with delay /l, 2,' enable 
one to determine the domain of stability in the parameter space of the non-linear problem 
and of the domain of attraction of the unperturbed solution for mainly autonomous and non- 
autonomous first-order systems. 

Following /3/, the application of the Lyapunov vector function is proposed in order to 
use the methods described in /l, 2/ constructively for systems of higher order. 

Let the unperturbed motion z- 0 of the system 

31 == i, (s (f)) -/- $ Ftj (5 (t)) uj P(t - ‘I), t=const>O 
j:, 

ZEIP, UER m, fi, Fij, sj EZ C'(!L), S2_CRR", m < R 

(1) 

without delay (z-:0) by asymptotically stable, and let a Lyapunov function r(z), positive 
definite in the convex region Q,cQ be known for (1), with the time dertivative of this 
function negative definite in 9 by virtue of the system (1) @=O). Some or all (when m=n) 
functions li(t(t)) here can be identically equal to zero. 

We take t=O as the initial instant. Let the initial continuous curve be described, at 
rgr<0, by the function @(t)=Q. We shall write it in the form of a sum Q(t) =v((t)+$(t) 
where /[v(t)/<@, 'p* = const([/.jl is the Euclidean norm of a vector) and the function lli (0. Ilr (0) = 
z(O) is a solution of system (1) for z=O. We will assume, without loss of generality, that 

'p (0) = 0 and call the function q(t) the reference function. 
Let the domain Q* together with its boundary a@ defined by the equation V(Z)= u*_ II* = 

coast >O lie within Q,. Such a domain will be the domain of attraction of the unperturbed 
solution 5= 0 of system (1) at -c=O /l/. The domain may collapse when z +o. Below we 
shall consider the bounded domains only. Ifontheother hand the motion z= 0 is asymptotically 
stable in the large when r= 0 I then the bounded domain Q, can be chosen arbitrarily. 

We shall regard as the domain of attraction of the unperturbed motion 5 -= 0 of system 

Cl), the sets of points of the phase space representingtheinitial values of the solutions 
of (1) tending, as t--roo, to the unperturbed motion z = 0 for any initial functions @((I) 
belonging to the class specified above. 

Let us clarify the conditions imposed on the parameters T and th* under which the region 
n* remains within the domain of attraction of the unperturbed motion. 

Let us write the solution of system (1) (T&O) within the time interval sgt<O in the 

form of a sum 5 (2) = *(t) i Y (Q where Y (0 = v(t) and t E [- t, 01. Then, when l&+il‘ the function 

Y(fJ will, according to (l), satisfy the differential vector equation which can be written 
in the form 
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(Here and sometimes below the argument t will not be written explicitly in functions independent 

of T). 
The solution s(t) of system (1) passing at t= 0 through the point X~E g*(z, is the 

closure of the domain 62). Irrespective oftheinitial function (q(t)+*(t)), v(O)= rO, it cannot 

leave the domain Q0 in a time shorter than 

where U* is the distance between the surfaces aQ* and 8P, (~99, is the boundary of 8, defined 

by the equation V(I)= u,). 

Therefore, if the region Q is not the same as Rn, we will adopt a preliminary limi- 

tation forthe delay: z<t*. The solution s(t),O< t<~ will have the corresponding solution 

y (II, 0 6 t < 5 of system (2) with initial function 'p (G. 
Let us estimate, over the norm, the solution y(t) within the time interval [O,r]. The 

region 0, is convex, therefore we can give the following upper estimate /4/ for the norms 

of the terms appearing on the right-hand side of (2): 

II FI II < 6 II Y /Iv II Fz II d &Ks II Y It (3) 

II Fs I/ G K&a II Y (t - T) /I, /I FP II < KzfG II 4’ (t - z) - $ (1) II 

5 E iif); i,k=l , . . . . n; j = 1, . . ., m. 

Here q(t) is the reference solution corresponding to the solution s(t), i.e. $(O)=z(O). 

Since t 

we have 

Therefore we have the followinq inequality for system (2): 

/I y’ II < Q II Y II + b II Y (t - 7) II + bA7, a = K, + b, b = Rd-3 (4) 

Using the Cauchy inequality we obtain ~]y~\‘<ljy’l/. Then, introducing the new variable 

z= IIy\j and remembering that 2 (t - 7) = II ‘F (t - .c) 111 we can write for the system (2) when 0<t< 

T, the following differential scalar inequality: 

z' < (12 (4 + bv, (4 + bAr, ~0 (t) = II ‘P (t - T) II (5, 
Taking into account the fact that z(O)= 0 and employing the method used to prove 

assertion I) in /5, p.172/, we obtain 

z (2) < c (As + cp’) (eat - I), c = b/a: (6) 

Thus the deviation in the norm of the trajectory of system (1) from the reference 

trajectory in the interval O<t<7, does not exceed a quantity z (7) estimated by the riqht- 

hand side of inequality (6). 
Let us denote by (@(t))(k= 1,X..) the sequence of reference trajectories for the solution 

3 (Q (I), satisfying the conditions @(kz)= z (kr). We have the followinq estimate for the 

deviation of 5 (t) from p' (ii, t E [O, 71 : 

IIVV) - *@)I19 IIt’( 1v(f)ll+ll~ (‘)- =(4lG 
i/ $” (T) - Q (T) I/ e’la” -/m 2, (T) < i (T) (1 + e’l”lT) 

Note that inequality (7) also holds for any reference solution $x(t), q().r) = 

when t E [--hr, (1 - 2.) T]. 

Let us study some properties of the solutions of (1). 

Lemma 1. If the parameters ~,y* satisfy the inequality 

e (AT -; q~*) (ear - 1) (e”“” -1 1) < ‘P* 

then, when t>O, the trajectory Z(L) will belong to the set of initial functions 

it remains within the region Q,. 

Proof. From the inequalities (6)-(S) it follows that ]~Q1(t)-z(t)lJ<~* when 

But then we also have l]@(f)- s(t)(i<(~* when t E I(k - I)?. hrl for h- = 2, 3,. . 

(7) 

2 (hT), h E [O,l] 

(3) 

as long as 

t E LO, Tl. 
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The remark following inequality (7) applies to any time interval [(k - 1 - &) z, (k - h) z1.h E 
KLfl.. therefore the last inequality also holds for such a time interval. 

Lemma 2. If the following inequalities hold together with inequality (8): 

c(dr f m*)(eQT- I)<?: mP*<il* (9) 
where c is the minimum distance between the surface KZ* and its image y:(t) after the time z, 
then the solution of (1) z(t),z(O)f 3i* cannot leave the region St, when t>O. 

Proof. From the condition v* <a* and (8) it follows that when ~E[O,T], the trajectory 
3 (0 does not leave ft, and the phase point lies within Q* when t=‘S. Therefore Lemma 1 
applies when t ~[r, 271 and inequality (9) remains true. Then the trajectory 3J ($1 cannot 
leave D, for any t&O. 

Lemma 3. If the delay t satisfies the inequality 

?b<i, 1. = ca (P- I)*(P~r-+- 1) PO) 

and the trajectory s(t) remains in 5, also when 12-0, then its deviation from the reference 
trajectory $x(t) when t ~fkT,(k+ i)rl,k= 0, 1,2,. . . (@(kc) = s(kr)) does not exceed ZQ. - z+ as k - co, 
i.e. 

z*<z*, I+ I Df(l-- h) (1') 

D = cAr(P .- 3) [l +c(e”r- l)jP~~f 1)j 

and 
fk <I* + p* fort? = 1, 2,. . . (12) 

Proof. When t E [O, rl , the deviation is estimated by means of the quantity z, equal to 
the right-hand side of inequality (6) when t=c In order to obtain an analogous estimate 
for t E[T, 24, it is sufficient according to (7) to replace q~ in inequality (6) by a,(l+ PI'), 
i.e. zy = D + hq". 

Continuing this process we obtain, at the k-th stage, 

z* = D(ifli)(lfh2j (l+- ha) ...(l-t.hs'-3)4hai-z(F* 
By virtue of condition (10) z~-.+z*,z*<w,~--~~. (We note that z* is independent of ~8). 

Taking into account the fact that 

(l_kh)(lS_ Ao).-.(l.:- j&+3)= 1 +a +?.a+ h3+ . . . -i_ l.r*s+..,+z4-3 <l/(1-&) 

we obtain (11) and inequality (12) becomes obvious. 
We will further assume that all regions Q,, bounded by the surface r'(z) = II. Y E IO, rol, are 

convex, and BB, is determined by the equation V(X)== cg. We shall also assume that inequality 
(6) and the quantity p are specified for every such region, i.e. the functions A = A (v). a = 
a (v), a, = al(v), a, = es (v), p = p (cf are known. Then z&, it, &it, Z* will also be functions of U. 

Let us denote by h' (u), D'(U), 2' (L.) the expressions obtained from h(u), D (c), z* (v) respectivley, 
after replacing C(Y) by f ‘() c U , c' (0) = mal c* (u'), u' < L'. We see that i, (c) < j.' (s), D (v) < D' (L.), s+ (v) 4 2' (r~) 
and the right-hand sides of these inequalities decrease monotonically as Y---r& and z' (u) -+ 0. 

Theorem. In order for Q* to belong to the domain of attraction of the unperturbed 
motion Z= O(1), it is sufficient that the parameters t and rp * satisfy the inequalities (8, 9) 
as well as the inequalities 

1,' (0) < 1 (13) 

2' (G) < p (c), 0 < c < clJ (14) 

Proof. When conditions (8), (9) hold, then according to Lemma 2 any trajectory z(t) of 
system (1) (with the initial function belonging to the class chosen previously) remains in 

Q0 when t>O. 
Since h'(u) decreases monotonically as c-0, condition (13) guarantees that the function 

2' (v) exists and is continuous in [o, vol. Thus inequality (14) makes sense. Let us assume that 
it holds. Then we have, in particular, z'(uO)>p(uO), and according to Lemma 3, when the number 
k = k, becomes sufficiently large, zk<z* <z'(o,,) will hold. Therefore, beginning from at least 
this number and by virtue of the finite difference P(Q) --Zig,, the trajectory z(t) must remain 
in the region fl,,,,, v(I) < z+. 

Applying the previous arguments to this region, we can confirm that, beginning from some 
number Ir=k,>k,, the trajectory z(t) will remain within the region Q,:,,, u@) (x"). 

The sequence ~(l).~~~~f,...,v('),.,. tends to zero as L-M, since the assumption that ui')- 

V* > 0 is confirmed by the existence of a number f for which the difference p(t**) --rr!>O. (We 
have not used the preliminary inequality t<i* in the proof, and it can therefore be 
neglected.) 

Corollary 1. If the solution z= 0 (1) is asymptotically stable in the large when +=- 1). 
the regions sZ, are convex and the inequalities (13), (14), hold when v~(O,m),t = z* (the 
inequalities (8), (9) are omitted), then it is clear that the solution remains asmyptotically 



stable in the 

Note 1. 
V(S) = u and 

the solution) 

for t=t and 
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large when z= t*,(p*<limz'(v),u-co. 

We can use, as the minorant for P(U) I the minimum distance between the surfaces 

v (5) = UT where vy is defined as the value of the solution (or as a minorant of 

of the differential equation 

V' = - w (u), IL' (u) g min (- V (s))~=~. z fs S2, 

initial condition " (0) = ". 

(151 

Corollary 2. If system (1) is linear with constant coefficients and the solution I -= u 

is asymptotically stable, then for any rp* there exists r*>O, such that when z< r*, the 
solution I= 0 remains asymptotically stable in the large. 

Proof. According to the well-known Lyapunov theorem a positive definite quadratic form 

V(Z) such that V'= U can be constructed for the function r_/ = -ilz[F. 

We have the estimate l/r/la>, V(S)/~\ where i\ is the largest eigenvalue of the matrix of 

the form V(Z). Therefore, we obtain the estimate JjzIIz>v/.\ for ZE a& and we can take the 

right-hand side of the latter inequality as W(U). Thus Eq.(lS) here takes the form U' =-II/.\. 
Then 

",="e-r'A and P(u) = + i\-"*%1/; + o(t). 

We further note that (by virtue of the linear character of (1)) a sufficiently large 

number A,>0 exists for which A <A,fl/U,O< v and the coefficients a,a,,a,, b,c,h do not depend 

on v and h-+0 as z- 0. Therefore z' (u) = AZ (~)r/; A, (r) = o (T). 
This means that for sufficiently small r the conditions of Corollary 1 will hold for 

any 'P*, and this proves the validity of the assertion. 

Note 2. Eqs.(l) appear, for example, when solving the problems of the optimal stabiliza- 
tion of stationary motions (51, provided that we take into account the delayintransmitting 

the control signals. But in this case the Lyapunov function will, by virtue of (11, only 

have a time derivative with negative terms when t= 0, and for this reason the result obtained 

here cannot be used directly. In many cases however, the function can be rearranged into a 

function with a negative definite derivative /6/. 

Note 3. If inequality (14) is violated when U= v*<u*, this will clearly mean that the 
trajectories of (1) originating in B* will arrive, after a finite time, at the region ",. 
and will remain in this region as t-m, i.e. Q,+ is an attractor for (1). 

Example. 1. When %=O, the position of equilibrium z=O is asymptotically stable in 
the large for the system 3,' = z2, z*' = -zl - za (t - r) , and V (5) = z12 + zl? + zlzl. 1 (0 = -1. (2). Let 
us estimate r;r+* for any region Q, which represents the interior of the ellipse Xl? + +2 I 

z1z2 = ug. 

Here A = 1/2x, a, = a, = 1, li, = 1/'6, h', = 2, A, = 1, a = 4, 8 

w(u)= ", c* = uc', 

and when r= O,l,z'(u)= O.O41I/F,h'<i,P(v)= O.O4OI/z i.e. the solution z= 0 remains asymptotically 
stable in the large for any 'p*. 

Note that the asymptotic stability of linear systems with a delay and with constant 

coefficients can be studied using the method of D-decompositions /7/. By testing various 
values of T we can determine, using this method, the admissible delay with a greater 

accuracy, but the method does not produce, for given q*, an estimate of the region in which 

the solution must always remain. 

Example 2. The following expressions /8/: 

1 

T’ = -A-- + ya ,-=_4 r L 1 
Y2 

1+sa ’ -1 (l+sZ)'T(I+,~)a 
, 

are known for the system 

- 2Z(f - q -2((si-Y) 
=' = (1 .+q2 i- 2Y, Y’ = (1 +$,* 

when TZO. Here the domain of attraction of the zero order solution is the region bounded 

by the surface 9/(1 + 9) + yz = co, I.~ < 1. 

When r;< vO= 0.5, the regions ~2, are convex. Here Eq.(15) has the form v' = -4~:(l- ~1~ and 
the quantity ur is given by the expression VT = 47 + " + In (1 - 0) - In c _t In Vr - In (1 - UT). 

Seeking the solution of the last equation in the form of the series 

UT = U + gl (U) T + g, (U) + + . . 

we obtain, up to terms of order O(T), 
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Having found a, = 2,n, = 1, K, = 2 1/K K,= 2, K,= 2, A =d&, we can confirm that all the 

conditions of the thoerem hold, e.g. when r= 0.05,@= O.?, and the region Q* is determined 

by the parameter u*= 0.37. 

Example 3. When z= 0, the position of equilibrium z= 0 of the system 

zl' = -@,%, (t - r) + b,s,, 2%. = -bsz, - b,Q, (b, > 0, . . ., 4 > Q) (16) 

is asymptotically stable in the large /8/ and 

V = b,q2 + bzrpz, 1.’ = -2b,b,cq’ - 2b,b4x2’ 

The regions Q, are convex for any v>o. 

Taking into account the symmetry of the surfaces V(z)= II, we obtain 

It can be shown that all conditions of the theorem will hold, at least when r,uO and 

rp* = O(rfg) are sufficiently small. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

KRASOVSKII N.N., Certain Problems of the Theory of the Stability of Motion. Moscow, 

Fizmatgiz, 1959. 

RAZUMIKHIN B.S., A method of studying the stability of systems with delay. Dokl. AS SSSR, 

167, 6, 1966. 

GROMOVA P.S., The method of Lyapunov vector functions for systems with deviating argument. 

In: The Direct Method in the Theory of Stability with Applications. Novosibirsk, Nauka, 

1981. 

PONTRYAGIN L.S., Ordinary Differential Equations. Moscow, Nauka, 1974. 

RUMYANTSEV V.V., On the optimal stabilization of control systems. PMM, 34, 3, 1970. 

BLINOV A.P., The problem of constructing a Lyapunov function. PMM, 49, 5, 1985. 

EL'SGOL'TS L.E. and NORKIN S.V., Introductiontothe Theory of Differential Equations 

with Deviating Argument. Moscow, Nauka, 1971. 

BARBASHIN E.A., Lyapunov Functions. Moscow, Nauka, 1970. 

Translated by L.K. 


